3.188 \(\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx\)

Optimal. Leaf size=104 \[ -\frac {2 (-1)^{3/4} \sqrt {a} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

-2*(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d-(1+I)*arctanh((1+
I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3563, 3544, 205, 3599, 63, 217, 203} \[ -\frac {2 (-1)^{3/4} \sqrt {a} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(-2*(-1)^(3/4)*Sqrt[a]*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - ((1 + I
)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3563

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(a*c - b*d)/a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[d/a, Int[(Sqrt[a + b*Tan[e
 + f*x]]*(b + a*Tan[e + f*x]))/Sqrt[c + d*Tan[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rubi steps

\begin {align*} \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx &=-\left (i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\right )+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx}{a}\\ &=\frac {(i a) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2 i a) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2 i a) \operatorname {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {2 (-1)^{3/4} \sqrt {a} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.17, size = 229, normalized size = 2.20 \[ \frac {i \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (\sqrt {2} \left (\log \left (-2 \sqrt {2} e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )-\log \left (2 \sqrt {2} e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )\right )-4 \log \left (\sqrt {-1+e^{2 i (c+d x)}}+e^{i (c+d x)}\right )\right ) \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d \sqrt {-1+e^{2 i (c+d x)}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((I/2)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*Cos[c + d*x]*(-4*Log[E^(I*(c + d*x))
+ Sqrt[-1 + E^((2*I)*(c + d*x))]] + Sqrt[2]*(Log[1 - 3*E^((2*I)*(c + d*x)) - 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1
 + E^((2*I)*(c + d*x))]] - Log[1 - 3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d
*x))]]))*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[-1 + E^((2*I)*(c + d*x))])

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 413, normalized size = 3.97 \[ -\frac {1}{2} \, \sqrt {\frac {4 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + i \, d \sqrt {\frac {4 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \frac {1}{2} \, \sqrt {\frac {4 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} - i \, d \sqrt {\frac {4 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \frac {1}{2} \, \sqrt {\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + i \, d \sqrt {\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \frac {1}{2} \, \sqrt {\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} - i \, d \sqrt {\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(4*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*
d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) + I*d*sqrt(4*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 1/2*sq
rt(4*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2
*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) - I*d*sqrt(4*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 1/2*sqrt(2*I*
a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) +
 1))*(e^(2*I*d*x + 2*I*c) + 1) + I*d*sqrt(2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 1/2*sqrt(2*I*a/d^2)*
log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e
^(2*I*d*x + 2*I*c) + 1) - I*d*sqrt(2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i \, a \tan \left (d x + c\right ) + a} \sqrt {\tan \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.26, size = 347, normalized size = 3.34 \[ -\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}-\sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \tan \left (d x +c \right )+2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \tan \left (d x +c \right )+2 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right )\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

-1/2/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*
tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)-2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d
*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*tan(d*x+c)+2*I*(-I*a)^(1/2)*ln(1
/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)+2*(-I*a)^(
1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2)))/(a*tan(d*x+
c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i \, a \tan \left (d x + c\right ) + a} \sqrt {\tan \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 7.31, size = 278, normalized size = 2.67 \[ \frac {\sqrt {a}\,\ln \left (\frac {\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (2-2{}\mathrm {i}\right )}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}-\frac {a\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}+1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{d}-\frac {\sqrt {\frac {1}{2}{}\mathrm {i}}\,\sqrt {a}\,\ln \left (-\frac {a\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}+\frac {2\,{\left (-1\right )}^{3/4}\,\sqrt {2}\,\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}+1{}\mathrm {i}\right )}{d}-\frac {\sqrt {4{}\mathrm {i}}\,\sqrt {a}\,\ln \left ({\left (-1\right )}^{3/4}+\frac {\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}\right )}{d}+\frac {\sqrt {2}\,\sqrt {a}\,\ln \left (\sqrt {2}\,\left (1-\mathrm {i}\right )+\frac {2\,\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}\right )\,\left (1+1{}\mathrm {i}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

(a^(1/2)*log((a^(1/2)*tan(c + d*x)^(1/2)*(2 - 2i))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)) - (a*tan(c + d*x)
)/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + 1i)*(1/2 + 1i/2))/d - ((1i/2)^(1/2)*a^(1/2)*log((2*(-1)^(3/4)*
2^(1/2)*a^(1/2)*tan(c + d*x)^(1/2))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)) - (a*tan(c + d*x))/((a + a*tan(c
 + d*x)*1i)^(1/2) - a^(1/2))^2 + 1i))/d - (4i^(1/2)*a^(1/2)*log((-1)^(3/4) + (a^(1/2)*tan(c + d*x)^(1/2))/((a
+ a*tan(c + d*x)*1i)^(1/2) - a^(1/2))))/d + (2^(1/2)*a^(1/2)*log(2^(1/2)*(1 - 1i) + (2*a^(1/2)*tan(c + d*x)^(1
/2))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)))*(1 + 1i))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \sqrt {\tan {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*sqrt(tan(c + d*x)), x)

________________________________________________________________________________________